

Методические указания по расчету необходимого системного цикла

Содержание

1.	Условные обозначения и термины	3
	1.1. Условные обозначения	
	1.2. Перечень терминов и сокращений	
2.	Введение	5
3.	Методика подбора необходимого цикла контроллера	6
	3.1. Формула подсчета необходимого цикла	6
	3.2. Исходные данные для модулей ввода/вывода и функционал	ьных
	блоков	7
	3.3. Примеры	

1. Условные обозначения и термины

1.1. Условные обозначения

Внимание:

Помечает информацию, с которой необходимо ознакомиться, чтобы учесть особенности работы какого-либо элемента программного обеспечения.

осторожно:

Помечает информацию, с которой необходимо ознакомиться, чтобы предотвратить нарушения в работе программного обеспечения либо предотвратить потерю данных.

Помечает информацию, с которой необходимо ознакомиться, чтобы избежать потери контроля над технологическим процессом.

1.2. Перечень терминов и сокращений

Атрибут

Атрибут 1 функционального блока - одно из значений, характеризующих функциональный блок, позволяющее задавать его свойства 2 .

Контроллер РСУ

Контроллер распределенной системы управления - узел РСУ, выполняющий технологическую программу. Контроллер РСУ обеспечивает связь технологической программы с объектом управления и вышестоящими узлами РСУ.

¹ Перечень типов данных атрибутов функционального блока описан в разделе **4. Атрибуты функциональных блоков Таблица 2. Типы данных атрибутов функционального блока** документа "Концепция технологического программного обеспечения".

² Базовый набор атрибутов описан в разделе **4.1 Базовый набор атрибутов функционального блока** документа "Концепция технологического программного обеспечения".

Корзина

Набор модулей контроллера РСУ, снабженный отдельным модулем источника питания (резервным модулем источника питания).

Модуль ввода/вывода

Составная аппаратная часть контроллера РСУ, предназначенная для сопряжения с объектом управления, которая обладает интерфейсами для считывания показаний со средств измерения и/или выдачи управляющего воздействия на исполнительный механизм.

Окно конфигурации функционального блока

Визуальный компонент конфигурации функционального блока, посредством которого задаются его настройки.

Распределенная система управления - РСУ

Программно-аппаратный комплекс управления технологическим процессом, характеризующийся распределенной системой ввода-вывода и децентрализацией обработки данных.

Системный функциональный блок

Функциональный блок, обеспечивающий доступ к аппаратным функциям контроллера РСУ.

Технологическое программное обеспечение

Программное обеспечение, которое выполняется в среде исполнения контроллера РСУ и состоит из связанных между собой в контуры функциональных блоков.

Функциональный блок

Составная программная часть технологической программы РСУ, которая используется при построении программного обеспечения РСУ. Функциональные блоки подразделяются на технологические и системные.

2. Введение

Документ "Методические указания по расчету необходимого системного цикла" (далее Руководство) относится к комплекту эксплуатационных документов программного обеспечения (ПО). Руководство содержит методику расчета прогнозируемого системного цикла для одной пары контроллеров. Для подсчета необходимо знать наполнение корзин ввода/вывода, а также примерное количество функциональных блоков для обработки сигналов с корзин ввода/вывода.

- из главного меню командой Помощь > Справка;
- по клавише "F1";
- выбором пункта Справка из контекстного меню дерева проекта.

3. Методика подбора необходимого цикла контроллера

Для вычисления необходимого цикла контроллера необходимо узнать ожидаемый процент нагрузки цикла контроллера и модулей ЦПУ1 (основной) и ЦПУ2 (резервный).

3.1. Формула подсчета необходимого цикла

Процент от нагрузки цикла контроллера вычисляется по следующей формуле:

$$p_{\text{цикл}} = (t_{\text{нач}} + t_{\text{мод}} + t_{\text{техн}} + (t_{\text{мод}} + t_{\text{тех}}) \times k_{\text{вн}}) / T$$
, где

 $t_{\text{нач}}$ — начальное время

 $\mathbf{t}_{\text{мод}}-$ время на обработку модулей ввода/вывода

 $t_{
m Texh}$ — время на обработку технологических функциональных блоков

 $k_{\text{вн}}$ – коэффициент для определения внутренних затрат контроллера на обработку технологической программы

Т – цикл контроллера, мс

Процент от нагрузки модуля ЦПУ вычисляется по следующей формуле:

$$p_{\text{ЦПУ}} = p_{\text{нач}} + p_{\text{мод}} + p_{\text{техн}} + (p_{\text{мод}} + p_{\text{тех}}) \times k_{\text{вн}},$$
 где

 $p_{\text{нач}}$ — начальная нагрузка в процентном соотношении

 $p_{\text{мод}}-$ влияние нагрузки на цикл модулей ввода/вывода на ЦПУ

 $p_{\text{техн}}$ — влияние нагрузки на цикл технологических функциональных блоков на ЦПУ

 $k_{\mbox{\scriptsize BH}}$ – коэффициент для определения внутренних затрат контроллера на обработку технологической программы

Для контроллера MK502142CPU и прошивки к релизу naftaprocess_1.8.0 $k_{\rm BH} = 0.097$.

Внимание: Процент нагрузки не должен превышать р_{макс}, который для прошивки к релизу naftaprocess 1.8.0. равен 80%.

3.2. Исходные данные для модулей ввода/вывода и функциональных блоков

 $t_{\text{мод}}$ вычисляется путем сложения затрат на исполнение модулей ввода/вывода из таблицы 1.

Таблица 1. Нагрузка на цикл от модулей ввода/вывода

Модуль ввода/вывода	Время исполнения при цикле 100 мс	Время исполнения при цикле 250 мс	Время исполнения при цикле 500 мс
MK-576-016A	0,7916	0,8843	1,2336
MK-574-008A	0,3326	0,3394	0,3525
MK-521-032A	0,1037	0,0720	0,0470
MK-531-032A	0,0995	0,0605	0,0838

 $t_{\text{техн}}$ вычисляется путем сложения затрат на исполнение всех технологических блоков из таблицы 2.

Таблица 2. Нагрузка на цикл от технологических функциональных блоков

Функциональный блок	Время исполнения при цикле 100 мс	Время исполнения при цикле 250 мс	Время исполнения при цикле 500 мс
DiscretePoint	0,0132	0,0131	0,0138
AnalogInputPoint	0,0191	0,0193	0,0205
AnalogOutputPoint	0,0116	0,0118	0,0128
PID	0,0393	0,0391	0,0385
Program(LC)	0,0495	0,0512	0,0500
Program Medium	0,4232	0,4280	0,4287

где:

Program(LC) – блок Program с несколькими строками кода;

Program Medium – блок Program с 100 строками кода, с чтением/записью в атрибуты функциональных блоков контроллера.

Значение t_{нач} берётся из таблицы 3.

Таблица 3. Базовая нагрузка на контроллер

Тип нагрузки	Цикл 100 мс	Цикл 250 мс	Цикл 500 мс
ЦПУ1, %	24,3234	23,0977	22,1166
ЦПУ2, %	24,2413	23,9958	24,1954
ОЗУ, %	50	50	50
Цикл, %	8,7861	4,0411	2,1822
Время обработки цикла, мс	8,7861	10,1028	10,9110
Средняя нагрузка на сеть (APM)		7546 байт/сек	
Средняя нагрузка на сеть (Активный ЦПУ)		5873 байт/сек	

Таблица 4. Влияние нагрузки на цикл модуля аналогового ввода МК-576-016A на ЦПУ

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ1, %	1,0100	0,6478	0,5617
Влияние на ЦПУ2, %	0,7406	0,7313	0,4861
Влияние на ОЗУ, %	0,8333	0,8333	0,8333
Влияние на цикл, %	0,7916	0,3537	0,2467
Нагрузка на цикл, мс	0,7916	0,8843	1,2336
Средняя нагрузка на сеть (APM)		187,83 байт/сек	
Средняя на геть (Активный ЦПУ)		194 байт/сек	

Таблица 5. Влияние нагрузки на цикл модуля аналогового вывода МК-574-008A на ЦПУ

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ1, %	1,0354	0,8394	0,8275
Влияние на ЦПУ2, %	0,8630	0,8198	0,8458
Влияние на ОЗУ, %	0,0833	0,0833	0,0833
Влияние на цикл, %	0,3326	0,1357	0,0705
Нагрузка на цикл, мс	0,3326	0,3394	0,3525
Средняя нагрузка на сеть (APM)		187,83 байт/сек	
Средняя нагрузка на сеть (Активный ЦПУ)			

Таблица 6. Влияние нагрузки на цикл модуля дискретного ввода МК-521-032A на ЦПУ

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ1, %	0,2111	0,1279	0,1095
Влияние на ЦПУ2, %	0,3688	0,0224	0,2227
Влияние на ОЗУ, %	<0,05	<0,05	<0,05
Влияние на цикл, %	0,1037	0,0288	0,0094
Нагрузка на цикл, мс	0,1037	0,0720	0,0470

Таблица 7. Влияние нагрузки на цикл модуля дискретного вывода МК-531-032A на ЦПУ

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ1, %	0,4961	0,2456	0,1682
Влияние на ЦПУ2, %	0,4664	0,0900	0,2450
Влияние на ОЗУ, %	<0,05	<0,05	<0,05
Влияние на цикл, %	0,0995	0,0242	0,0168
Нагрузка на цикл, мс	0,0995	0,0605	0,0838

Таблица 8. Влияние нагрузки на цикл технологического функционального блока DiscretePoint на ЦПУ

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ1, %	0,0074	0,0039	0,0027
Влияние на ЦПУ2, %	0,0085	0,0075	0,0020
Влияние на ОЗУ, %	0,0039	0,0039	0,0039
Влияние на цикл, %	0,0132	0,0052	0,0028
Нагрузка на цикл, мс	0,0132	0,0131	0,0138
Средняя нагрузка на сеть (APM)		74,23 байт/сек	
Средняя на геть (Активный ЦПУ)		77,51 байт/сек	

Таблица 9. Влияние нагрузки на цикл технологического функционального блока AnalogInputPoint на ЦПУ

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ1, %	0,0120	0,0050	0,0035
Влияние на ЦПУ2, %	0,0122	0,0023	0,0006
Влияние на ОЗУ, %	0,0068	0,0068	0,0068
Влияние на цикл, %	0,0191	0,0077	0,0041
Нагрузка на цикл, мс	0,0191	0,0193	0,0205
Средняя нагрузка на сеть (APM)		104,02 байт/сек	
Средняя 105,24 байт/сек нагрузка на сеть (Активный ЦПУ)			

Таблица 10. Влияние нагрузки на цикл технологического функционального блока AnalogOutputPoint на ЦПУ

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ1, %	0,0063	0,0019	0,0009
Влияние на ЦПУ2, %	0,0062	0,0033	0,0038
Влияние на ОЗУ, %	0,0029	0,0029	0,0029
Влияние на цикл, %	0,0116	0,0047	0,0026
Нагрузка на цикл, мс	0,0116	0,0118	0,0128

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Средняя нагрузка на сеть (APM)		62,22 байт/сек	
Средняя нагрузка на сеть (Активный ЦПУ)		62,76 байт/сек	

Таблица 11. Влияние нагрузки на цикл технологического функционального блока PID на ЦПУ

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ1, %	0,0190	0,0084	0,0042
Влияние на ЦПУ2, %	0,0218	0,0118	0,0045
Влияние на ОЗУ, %	0,0088	0,0088	0,0068
Влияние на цикл, %	0,0393	0,0156	0,0077
Нагрузка на цикл, мс	0,0393	0,0390	0,0385
Средняя нагрузка на сеть (APM)	177,68 байт/сек		
Средняя нагрузка на сеть (Активный ЦПУ)	178,81 байт/сек		

Таблица 12. Влияние нагрузки на цикл технологического функционального блока Program(LC) на ЦПУ

Тип нагрузки	Влияние	Влияние	Влияние
	нагрузки при	нагрузки при	нагрузки при
	цикле 100 мс	цикле 250 мс	цикле 500 мс
Влияние на ЦПУ1, %	0,0139	0,0071	0,0044

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ2, %	0,0117	0,0108	0,0065
Влияние на ОЗУ, %	0,0039	0,0039	0,0039
Влияние на цикл, %	0,0263	0,0134	0,0051
Нагрузка на цикл, мс	0,0263	0,0334	0,0256

Таблица 13. Влияние нагрузки на цикл технологического функционального блока Program Medium на ЦПУ

Тип нагрузки	Влияние нагрузки при цикле 100 мс	Влияние нагрузки при цикле 250 мс	Влияние нагрузки при цикле 500 мс
Влияние на ЦПУ1, %	0,1732	0,0621	0,0229
Влияние на ЦПУ2, %	0,0973	0,0576	0,0305
Влияние на ОЗУ, %	0,0100	0,0100	0,0100
Влияние на цикл, %	0,4232	0,1712	0,0857
Нагрузка на цикл, мс	0,4232	0,4280	0,4287
Средняя нагрузка на сеть (APM)		115,29 байт/сек	
Средняя нагрузка на сеть (Активный ЦПУ)	114,40 байт/сек		

3.3. Примеры

Пример 1. Расчет нагрузки при цикле 100 мс

На объекте используется контроллер в резервной паре. Стенд включает шесть корзин и следующие модули:

- MK550024PSU 12 шт.;
- MK502142CPU − 2 IIIT.;
- MK521032A 20 шт.;
- MK531032A 15 шт.;
- MK576016A 4 шт.

В контроллер загружена технологическая программа, состоящая из следующих функциональных блоков:

- DiscretePoint 250 шт.;
- AnalogInputPoint 300 шт.;
- PID 200 шт.;
- Program Medium 5 шт.;
- Program(LC) 10 шт.

Расчет нагрузки на цикл контроллера

Согласно п. 3.1 Руководства, ожидаемая нагрузка на цикл контроллера при системном цикле 100 мс рассчитывается с использованием следующей формулы:

$$p_{\text{цикл}} = (t_{\text{нач}} + t_{\text{мод}} + t_{\text{техн}} + (t_{\text{мод}} + t_{\text{тех}}) \times k_{\text{вн}}) / T$$
, где

Для цикла 100 мс значение $t_{\text{нач}}$ определяется на основании данных, представленных в таблице 3, строка 5, что соответствует времени обработки данного цикла:

$$t_{\text{Hay}} = 8,7861 \text{ Mc}$$

$$T = 100 \text{ Mc}$$

Для $t_{\text{мод}}$ значение определяется на основании данных, представленных в таблице 1, что соответствует времени обработки модулей МК-521-032A, МК-531-032A и МК-576-016A соответственно:

$$t_{\text{MOII}} = 20 \times 0,1037 + 15 \times 0,0995 + 4 \times 0,7916 = 6,7329 \text{ MC}$$

Для $t_{\text{техн}}$ значение определяется на основании данных, представленных в таблице 2, что соответствует времени обработки функциональных блоков DiscretePoint, AnalogInputPoint, PID, Program Medium и Program(LC) соответственно:

$$t_{\text{техн}} = 250 \times 0.0132 + 300 \times 0.0191 + 200 \times 0.0393 + 5 \times 0.4232 + 10 \times 0.0495 = 19,501 \text{ mc}$$

$$p_{\text{ЦИКЛ}} = (t_{\text{HaY}} + t_{\text{MOД}} + t_{\text{TEXH}} + (t_{\text{MOД}} + t_{\text{TEX}}) \times 0,097) / T = (8,7861 + 6,7329 + 19,501 + 26,2639 \times 0,097) / 100 = 0,3759$$

$$0.3759 \times 100\% \approx 38\%$$

Расчет нагрузки на основной модуль ЦПУ контроллера

Согласно п. 3.1 Руководства, ожидаемая нагрузка на основной модуль ЦПУ при системном цикле 100 мс рассчитывается с использованием следующей формулы:

$$p_{\text{ЦПУ}} = p_{\text{нач}} + p_{\text{мод}} + p_{\text{техн}} + (p_{\text{мод}} + p_{\text{тех}}) \times k_{\text{вн}},$$
 где

Для цикла 100 мс значение $p_{\text{нач}}$ определяется на основании данных, представленных в таблице 3, строка 1, что соответствует начальной нагрузке на основной модуль ЦПУ в процентном соотношении для данного системного цикла:

$$p_{\text{Hay}} = 24,3234\%$$

Для р_{мод} значение определяется на основании данных, представленных в таблицах 6, 7, 4, что соответствует влиянию на нагрузку основного модуля ЦПУ в процентном соотношении от модулей МК-521-032A, МК-531-032A и МК-576-016A соответственно:

$$p_{\text{MOII}} = 20 \times 0.2111 + 15 \times 0.4961 + 4 \times 1.01 = 15,7035\%$$

Для р_{техн} значение определяется на основании данных, представленных в таблицах 8, 9, 11, 13 и 12, что соответствует влиянию на нагрузку основного модуля ЦПУ в процентном соотношении от технологических функциональных блоков DiscretePoint, AnalogInputPoint, PID, Program Medium и Program(LC) соответственно:

$$p_{\text{TEXH}} = 250 \times 0,0074 + 300 \times 0,0120 + 200 \times 0,019 + 5 \times 0,1732 + 10 \times 0,0139 = 11,506\%$$

$$p_{\text{ЦПУ}_1} = p_{\text{нач}} + p_{\text{мод}} + p_{\text{техн}} + (p_{\text{мод}} + p_{\text{тех}}) \times 0.097 = 54,172\% \approx 54\%$$

Расчет нагрузки на резервный модуль ЦПУ

Аналогичным образом рассчитывается нагрузка на резервный модуль ЦПУ контроллера при системном цикле 100 мс:

$$p_{\text{ЦПУ}_2} \approx 62\%$$

Таким образом, ожидаемая нагрузка на цикл контроллера составляет 38%, ожидаемая нагрузка на ЦПУ1 и ЦПУ2 составляет 54% и 62%. Цикл в 100 мс подходит для данной технологической программы.

Пример 2. Расчет нагрузки при циклах 100 мс и 250 мс

На объекте используется контроллер в резервной паре. Стенд включает шесть корзин и следующие модули:

- MK550024PSU 12 шт.;
- MK502142CPU 2 шт.;
- MK521032A 15 шт.;
- MK531032A 15 шт.;
- MK576016A 30 шт.

В контроллер загружена технологическая программа, состоящая из следующих функциональных блоков:

- DiscretePoint 500 шт.;
- AnalogInputPoint 500 шт.;
- PID 500 шт.;
- Program Medium 50 шт.;
- Program(LC) 10 шт.

Расчет нагрузки на цикл контроллера

Согласно п. 3.1 Руководства, ожидаемая нагрузка на цикл контроллера при системном цикле 100 мс рассчитывается с использованием следующей формулы:

$$p_{\text{цикл}} = \left(t_{\text{нач}} + t_{\text{мод}} + t_{\text{техн}} + \left(t_{\text{мод}} + t_{\text{тех}}\right) \times k_{\text{вн}}\right) / \text{ T, где}$$

Для цикла 100 мс значение $t_{\text{нач}}$ определяется на основании данных, представленных в таблице 3, строка 5, что соответствует времени обработки данного цикла:

$$t_{\text{Hay}} = 8,7861 \text{ Mc}$$

$$T = 100 \text{ Mc}$$

Для t_{мод} значение определяется на основании данных, представленных в таблице 1, что соответствует времени обработки модулей МК-521-032A, МК-531-032A и МК-576-016A соответственно:

$$t_{\text{мод}} = 15 \times 0,1037 + 15 \times 0,0995 + 30 \times 0,7916 = 26,796$$
 мс

Для $t_{\text{техн}}$ значение определяется на основании данных, представленных в таблице 2, что соответствует времени обработки функциональных блоков DiscretePoint, AnalogInputPoint, PID, Program Medium и Program(LC) соответственно:

$$t_{\text{TeXH}} = 500 \times 0.0132 + 500 \times 0.0191 + 500 \times 0.0393 + 50 \times 0.4232 + 10 \times 0.0495 = 57.455 \text{ Mc}$$

$$p_{\text{цикл}} = (t_{\text{нач}} + t_{\text{мод}} + t_{\text{техн}} + (t_{\text{мод}} + t_{\text{тех}}) \times 0,097) \ / \ T = (8,7861 + 26,796 + 57,455 + 84,251 \times 0,097) \ / \ 100 = 1,0121$$

$$1,0121 \times 100\% \approx 101\%$$

Расчет нагрузки на основной модуль ЦПУ контроллера

Согласно п. 3.1 Руководства, ожидаемая нагрузка на основной модуль ЦПУ при системном цикле 100 мс рассчитывается с использованием следующей формулы:

$$p_{\text{ЦПУ}} = p_{\text{нач}} + p_{\text{мод}} + p_{\text{техн}} + (p_{\text{мод}} + p_{\text{тех}}) \times k_{\text{вн}},$$
 где

Для цикла 100 мс значение $p_{\text{нач}}$ определяется на основании данных, представленных в таблице 3, строка 1, что соответствует начальной нагрузке на основной модуль ЦПУ в процентном соотношении для данного системного цикла:

$$p_{\text{Hay}} = 24,3234\%$$

Для р_{мод} значение определяется на основании данных, представленных в таблицах 6, 7, 4, что соответствует влиянию на нагрузку основного модуля ЦПУ в процентном соотношении от модулей МК-521-032A, МК-531-032A и МК-576-016A соответственно:

$$p_{\text{MOII}} = 15 \times 0.2111 + 15 \times 0.4961 + 30 \times 1.01 = 40.908\%$$

Для $p_{\text{техн}}$ значение определяется на основании данных, представленных в таблицах 8, 9, 11, 13 и 12, что соответствует влиянию на нагрузку основного модуля ЦПУ в процентном соотношении от технологических функциональных блоков DiscretePoint, AnalogInputPoint, PID, Program Medium и Program(LC) соответственно:

$$p_{\text{Texh}} = 500 \times 0,0074 + 500 \times 0,0120 + 500 \times 0,019 + 50 \times 0,1732 + 10 \times 0,0139 = 26,999\%$$

$$p_{\text{ЦПУ}_1} = p_{\text{нач}} + p_{\text{мод}} + p_{\text{техн}} + \left(p_{\text{мод}} + p_{\text{тех}}\right) \times 0,097 = 99,914\% \approx 100\%$$

Расчет нагрузки на резервный модуль ЦПУ

Аналогичным образом рассчитывается нагрузка на резервный модуль ЦПУ контроллера при системном цикле 100 мс:

$$p_{\text{ЦПУ}_2} \approx 91\%$$

Таким образом, ожидаемая нагрузка на цикл контроллера составляет 101%, ожидаемая нагрузка на ЦПУ1 и ЦПУ2 составляет 100% и 91%, что превышает максимально допустимую, цикл 100 мс не является допустимым для данной технологической программы.

Расчет нагрузки при цикле 250 мс:

 $p_{\text{цикл}}$ на цикл контроллера = 38,85% pprox 39%

 $p_{\text{ЦПУ}_1}$ на основной модуль ЦПУ = $60,32\% \approx 60\%$

 $p_{\mbox{\sc U}\Pi\mbox{\sc V}_2}$ на резервный модуль ЦПУ = $65,\!2\%\approx65\%$

Таким образом, ожидаемая нагрузка на цикл контроллера составляет 39%, ожидаемая нагрузка на ЦПУ1 и ЦПУ2 составляет 60% и 65%. Цикл 250 мс подходит для данной технологической программы.